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Abstract. The thin diluted ferromagnetic film with sc symmetry is considered in the third- 
order Matsudaira approximation. The equations for the description of magnetisation and 
various correlation functions have been derived and the results of the numerical calculations 
have been presented. In particular the critical temperature, the critical concentration, the 
magnetisation and various correlation functions are discussed in detail for various film 
thicknesses and for several magnetic atom concentrations. 

1. Introduction 

The Matsudaira method of calculation of Ising ferromagnet properties, developed 
originally for planar and bulk materials [ 11, predicts much more accurate results than do 
other theories, e.g. the molecular-field approach, or theories where only the correlations 
between NNS were taken into account [2-71. In this method the set of equations for 
magnetisation and the correlation functions was derived on the basis of general statistical 
equations [8,9] and in the calculations of the magnetisation curve the various correlation 
functions of spin pairs with different spin distances were taken into account. The solution 
of the above set of equations can be obtained by iteration, where the equations for the 
correlation functions are treated as successive corrections taken into account in the basic 
equation for magnetisation. It can be shown that a sufficient improvement in the accuracy 
of the results is obtained when the correlation functions for spin pairs from about six 
coordination zones are taken into account with further correlations decomposed to the 
square of magnetisation. 

This procedure corresponds to the third-order Matsudaira approximation. The 
significant improvement in the results obtained in this approximation in comparison 
with the results of methods where the correlations were neglected encouraged us to 
develop this method for the case of thin films. 

In the first attempt a thin diluted film composed of only two atomic layers was 
considered [lo]. 

In the present paper the Matsudaira method is applied to the description of a thin 
diluted film with an arbitrary film thickness and an arbitrary concentration of magnetic 
atoms. 
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As a result, first of all, a significant improvement in the critical temperature and the 
critical concentration have been obtained in comparison with the values resulting from 
the first-order approximation. Moreover, the temperature dependence of magnetisation 
and various correlation functions together with their profiles across the sample have 
been obtained. 

2. The theory 

The Ising Hamiltonian for a thin diluted film can be written in the form 

where p U j  = 2 1 is the spin variable, .lUj.vtjz is the exchange integral which is assumed to 
be different from zero for NNS only ( J u j , v J j ,  = J for v'j' E vj), and f v i  = 0; 1 is the 
occupation operator of the lattice site (vj). The position of the lattice site in thin film 
(vj), is given by thej-vector in the vth atomic layer. 

If there is a magnetic atom in the lattice site (vj) (the so-called conditional average), 
then on the basis of (1) we can write the generalised Callen equation 

where ( . . . ) T , r  denotes both thermodynamical and configurational averages while z ,  is 
the coordination number of the lattice site (vj). This value depends on whether the 
lattice site is inside the sample or on the film surface. 

Similarly, the general relation for the correlation functions can be written in the form 

where we have assumed that the lattice sites (vj) and (v 3' )  are occupied by magnetic 
atoms. In (3) we have introduced the abbreviated notation according to which CPU' 
denotes the two-spin correlation function with the considered spin pair located in v and 
v' atomic layers, while the subscript i is related to the spin-pair distance and denotes the 
number of the corresponding coordination zone (for instance i = 2 refers to the spin- 
pair distance equal to ad /Zin  the sc crystal with the lattice constant a).  The position of 
spin pairs in the correlation functions considered in this work is shown in figure 1. 

The averages ( . . . ) T , r  on the RHSS, of (2) and (3) are calculated in two steps. The 
thermodynamic average ( . . . )T is calculated by the cumulant method. In this method 
the cumulant averages ( . . . ), of the order greater than 2 are neglected and as a result 
the multi-spin correlations can be decoupled to the two-spin correlations [l, 101. The 
configurational average ( . . . ), can be calculated on the basis of the general relation 

(exp(cuEuj)), = c exp LY + (1 - c )  (4) 

where c = ( f U j ) ,  is the magnetic atom concentration in the sample. 



Magnetisation and correlation functions in thin films 3957 

cy< v, [V,V+‘  [ V ’ V  c v ’ v + l  [V’ v +  1 
1 2 3  2 3 

[ V ‘ V  [ V ’  V I 1  [V, v 1 2  
5 0  5 8 5 

[ V ‘ V * l  [V’ V I 2  [V‘ v [V’ V I  2 
6 ’ 6  1 2  1 

Figure 1. The position of spin pairs in the correlation function Cp,”’. The index i defines the 
coordination zone which is given by the corresponding spin-pair distance. 

As a result, on the basis of equations (2) and (3), the sets of equations for mag- 
netisation pv and for various correlation functions have been obtained. For the mag- 
netisation we have 

p v  = B I ( v ) ~ L , - l  + 4 B 2 ( v > ~ ,  + B 3 ( v ) p v + 1  + B4W ( 5 )  v = 2 ,3 , .  . ., n - 1 

P I  = 4 & ( 1 ) ~ 1  + B3(1)P2 + v = l  (6) 

Pfl = Bl(n)Pfl-l + 4Bz@>Pfl + B,(n) v = n. (7) 
The coefficients Bl( v), . . . , B4( v) depend on temperature, magnetic atom concentration 
and also on atomic layer magnetisation and correlations C;”’ and C,Y’’. They are listed 
in the appendix. 

The correlation functions for NN spins are given by the relations 

cy,v = (2C2y.U + c,Y,v + c ; - L u  + c ; > v + 1  + 1)bl 
+ [(2CZ,” + cy)(c,Y-l,”+l + 3c2y-1,u + 3CZ’”+1 + 1) 
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Figure 2. The spin 
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functions (pV,pv,,,) .  The lattice 

tv-I, ji site ( v ’ j ’ )  is not the N N  of the site (vj). 

If the lattice site (vj) is on the film surface, v = 1 (or v = n ) ,  then in (13) the 
correlation (pv- I d  p v , j , )  (or ( p v +  l,jpv,j8)) does not appear. 

With the use of (13) and figures 1 and 2 the respective equations for successive 
correlations Cp-”’ in the framework of the third Matsudaira approximation (where 
Cy,’’ = p v p v I  for i  > 7) can be easily derived. 

It can be noted here that from equations (11) and (12) some asymmetry of per- 
pendicular correlations results, for instance C:,’ # C ~ - ’ ~ “ .  The reason for this asym- 
metry in the asymmetrical form of the identity (3) for non-uniform systems. However, 
as we have assumed symmetrical boundary conditions in the thin-film sample, this 
asymmetry should be removed and below we shall consider the mean correlations 

which in our notation can also be written as 
Cy..’ = i(cy,v’ + cy””). 

Theformulaefor Cy’,” can be derived in analogous forms to (11) and (12) fromequations 
symmetrical to (3). This in fact corresponds simply to the following change in the indices 
in equations (11) and (12): 

v - l-, v ’  + 3 

v + l-, v - 1. 

The solutions pv( v = 1, . . . , n)  of (5)-(7) can be found for a given film thickness n 
by iteration with successive correlation functions taken into account; hence finally the 
numerical values of pv and of various correlations are obtained for a given temperature 
and concentration c. The results of these calculations are presented and discussed in the 
next section. 
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Table 1. The k,T,/J-values for thin films with sc symmetry obtained in the first- and third- 
order approximations. 

First-order Third-order 
n approximation approximation Series [ 131 

1 3.090 
2 4.081 
3 4.479 
4 4.678 
5 4.791 

10 4.984 
X 5.073 
(bulk) 

2.609 2.269 
3.637 
4.070 
4.290 
4.419 
4.646 
4.718 4.510 

(4.428 [14]) 

3. Numerical results and discussion 

Initially the first-order approximation was considered. In this approximation all cor- 
relations are decoupled and hence are presented as the products of corresponding 
magnetisations y,. Thus, thin-film magnetisation can be obtained only with the use of 
equations (5)-(7) and after calculations we obtained the same results as those presented 
in [ l l ,  121. 

Then, on the basis of the results of the first-order approximation the correlations 
cy,’” can be found, with all further correlations decoupled. Once cy,‘” are known, then 
also c,Y,” and C,Y,’’’ can be obtained and in this way we can calculate successive cor- 
relations on the basis of previously calculated ones for nearer spins. 

In the approximation corresponding to the third-order Matsudaira approximation 
we calculated correlations up to C,Y,’ and c,Y,”+’. Then, with these correlations known, 
we can successively correct the correlations Cg,’”, c;,’”, . . . up to finally cy,“. On the 
basis of all these correlations the magnetisation has been calculated once more, which 
in turn enables further correction of correlations. This, in turn, enables calculation of 
new magnetisation values. This procedure is repeated until the difference between 
successive results for yv becomes sufficiently small. 

In table 1 the values of the reduced critical temperature kBTc/J calculated in the first- 
and third-order Matsudaira approximations are given for several films with different 
film thickness parameters n. For n = 1 (the single plane) and for n = (bulk) the values 
of kB T,/Jobtained are compared with the most accurate results known from the literature 
[13]. As can be seen, the kBTc/J-values resulting from the third-order approximation 
are much closer to the exact values than those obtained in the first-order approximation. 
From table 1 it is also seen that the critical temperature is particularly strongly dependent 
on the film thickness for small n-values. Next, the critical concentration co(n) for various 
film thicknesses given by the parameter n has been calculated in the first- and third-order 
approximation (table 2). 

As can be seen, co(n) also strongly depends on n for small film thicknesses. It can be 
noted also that our results for n = 1 (single plane) and for c = ~4 are the same as those 
obtained in [ 1 3 .  

In figure 3 the magnetisation profiles for film composed of five atomic layers are given 
for several values of the reduced temperature T/Tc and for two values of concentration c. 
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Table 2. The critical concentration values for films with various numbers n of atomic planes. 

~~~~ ~ 

First-order Third-order From 
n approximation approximation [15] 

1 0.4284 0.4860 0.57 
2 0.3479 0.3805 
3 0.3245 0.3496 
4 0.3140 0.3360 
5 0.3082 0.3286 

10 0.2981 0.3153 
(bulk) 0.2929 0.3110 0.33 

Figure3. The magnetisation profiles for a film composed of five atomic planes: (a) the perfect 
crystal case (c = 1); ( b )  the diluted crystal with c = 0.5. 

Figure 3(a) presents the results for c = 1 (with kBT,/J = 4.419) while in figure 3(b) the 
results obtained for c = 0.5 (with k,T,/J = 1.617) are shown. 

These profiles and all further results were obtained in the third-order Matsudaira 
approximation, where the correlation functions up to the seventh coordination zone 
have been taken into account. 

In figures 4 and 5 some of the correlation functions calculated for the same film 
thickness (n  = 5) are given. 

In figure 4(a) the profiles of several longitudinal correlations (Cp,’, i = 1, 2 , 4  and 
7) calculated for T =  0.9Tc are shown while figure 4(b) presents some of the per- 
pendicularcorrelations (cj’-’/2,v+1/2, i = 1,2,3,6). Thevaluesfortheselast correlations 
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Figure 4. The profiles of some correlation functions across thin film with n = 5 (third-order 
approximation). (a) Longitudinal correlation functions Cy,” ( i  = l2 2 , 4  and 7) at the reduced 
temperature T/Tc = 0.9. ( b )  Perpendicular correlation functions C:-1/2.’+iiz (i = 1 ,2 ,3  and 
6 )  at TIT, = 0.9. (c) Longiludinal correlations C:,” ( i  = 1, 2, 4, 5 and 7 )  at T = T,. (d )  
Perpendicular correlations C:-”2.”+’/2 (i = 1 , 2 , 3 , 5  and 6 )  at T = T,. 

are given for non-integer indices, e.g. for v = 1.5 we have correlation of the type 
and so on. 

As can be seen from figures 4(a )  and 4 ( b )  the correlations strongly depend on the v- 
value. This behaviour is similar to the changes in the magnetisation across the film found 
at the same temperature (figure 3). The calculations made for low temperatures reveal 
that all correlation profiles flatten for T+O. The flattened correlation profiles are 
obtained also at T = T,, as is shown in figures 4(c)  and 4(d ) .  In these figures, besides the 
correlations given in figures 4(a)  and 4(b), correlations C;,”  and cgY-1’2,”+1/2 are also 
shown. At the critical temperature the differences between the correlations of different 
ranges reach the largest values. Above T, the correlation profiles remain flat and the 
differences between correlations gradually decrease, as all correlations tend to zero for 
the infinite temperature. 
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Figure 5. The same correlation functions as in figure 4 but for concentration c = 0.5 (n = 5 ) .  

I , , , Figure6. The temperature dependence of the sur- 
0 5  1 0  1 5  face correlation ct,' between NN spins for c = 1 

T/ Tc and c = 0.5 (n = 3). 

In figure 5 the same correlations are illustrated for c = 0.5. As the consequence of 
dilution some flattening of correlation profiles and increased difference between their 
values for different distances i is observed in the ferromagnetic region. 

In figure 6 the temperature dependence of the correlation function between NN 
spins, with both spins on the film surface has been presented for the case of n = 3 and 
for two concentration values, i.e. for c = 1 (kBTc/J = 4.070) and for c = 0.5 (with 

It is seen that with increase in the alloy dilution some flattening of the f 2 i . l  versus 
temperature curve is observed, i.e. with decreasing c-value C;,' becomes smaller in 

kB Tc/J = 1.432). 
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the ferromagnetic region, while it increases above T, for corresponding reduced 
temperatures. 

The crossing of the correlation function of the diluted and of the pure system exactly 
at T, (as seen in figure 6) is only due to the reduced temperature scale and does not occur 
when the absolute scale with different kgTC/J-values is adopted. 

The calculations made for other n- and c-values confirm the general behaviour of the 
correlation functions in thin diluted films discussed above, 

To summarise, it can be stated that the Matsudaira method, although rather soph- 
isticated, can be successfully applied also in the case of thin films. As a result, not 
only are the magnetisation curve, critical temperature and concentration significantly 
improved but also some additional information concerning the behaviour of the cor- 
relation functions is obtained. In particular, the directional dependence of these func- 
tions in thin films is predicted. It can be noted also that, with the correlation functions 
known, other film properties such as for instance the magnetic susceptibility, the specific 
heat or the magnetic contribution to electrical resistivity can be calculated. 

Acknowledgment 

This research was supported by CPBP 01 .OS. 

Appendix. The list of coefficients in equations (5)-(13) 



are given by the relations 

u1 = (c5/16)(T5 + 3T3 + 2T1) + [c4(l - ~)/2](T4 + 27'2) + [3c3(1 - ~ ) ~ / 2 ]  

x ( T ~  + T , )  + 2c2(1 - c ) 3 T 2  + c(1 - c ) ~ T ,  

a2 = (c5/16)(T5 - T3 - 2T1) + [c4(l - ~)/4](T4 - 2T2) 

+ iC3(1 - c ) 2 / 4 1 ( ~ 3  - 3T1) 

a3 

bl = (c6/32)(T6 + 4T4 4- 5T2) 4- [5c5(1 - ~)/16](T5 4- 3T3 4- 2T1) 

(c5/16)(T5 - 5T3 + 107'1) 

+ [5c4(1 - ~)'/4](T4 + 2T2) + [5c3(1 - ~ ) ~ / 2 ]  

x ( T ,  + T , )  + [5c2(1 - c ) ~ / ~ ] T ,  + c(1 - c ) ~ T ~  

b2 = (c6/32)(T6 - 3T2) + [3c5(1 - ~)/16](T5 - T3 - 2T1) 

+ [3c4(1 - ~ ) ~ / 8 ] ( T 4  - 2T2) 

+ [c3(1 - C ) ~ / ~ I ( T ~  - 3T1) 

b3 = (C6/32)(T6 - 4T4 + 5T2) + [C5(1 - ~)/16](T5 - 5T3 + 10T1) 

where 

T ,  = tanh(nJ/kB T ) .  
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